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Abstract

Oceanographers desire accurate methods of tracking features in satel-
lite images of the ocean in order to observe and quantify surface layer
dynamics. Infrared images of the ocean showing sea surface temperatures
are widely used for the studies of this type.

Feature tracking from time series of satellite IR images poses two prob-
lems: First, the features of interest have weak edges and constantly evolv-
ing shapes from image to image. That means features merge, split, grow,
shrink, disappear are created on time scales that are comparable to the
sampling interval of the satellite imagery (12 hours). In other words,
the phenomenology under investigation is Turbulent Fluid flow, not rigid
body motion. The second problem which results from the first, is feature
motion cannot be defined by parameters that are functions of scale as well
as space and time. A simple example of different motions associated with
different scales is seen in the ocean "front”. Most ocean fronts exhibit
shear across the frontal boundary.

In this paper we present some new results in our oceanographic velocity
of the image flow and more specifically, we discuss a new approximation
method to estimate the velocity field of Gulf stream from a sequence of
satellite images. In this method, connected components of the region
representing a stream is identified, triangulated and the velocity field on
the region is estimated by the affine approximation on each triangle.

1 Introduction

Our primary objective is to get an estimate of the velocity vector field of moving
regions in a given sequence of images. In oceanographic images, for example,
we are interested in tracking the movement of mesoscale features such as Gulf
streams and Eddies. We consider following two subproblems for the problem of
estimating the velocity field of moving regions.
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Boundary extraction and tracking — The boundaries of a region are ex-
tracted by applying segmentation and edge detection operators. The extracted
boundary is approximated by a piecewise linear curve, which is a continuous
concatenation of line segements. A piecewise linear curve is also called a polyg-
onal curve. For example, a circular curve can be approximated by a regular
polygonal curve. Though more elaborate higher degree spline approximation
techniques are available, the standard linear approximation of the regions is
suitable for our method of estimating the velocity vector field. The region itself
is triangualted into a simplicial complex based on the piecewise linear boundary
of the region. In other words, we triangulate (i.e., construct a piecewise linear
approximation of) the region (a two dimensional object) based on the piecewise
linear approximation of the boundary curve (a one dimensional object). Such
approximation for any dimension is called triangulation. Those constructions
can be applied to higher dimensional objects (surfaces, solids, or n-manifolds)
recursively.

Motion estimation — Given simplicial complexes approximating the regions
in the image sequence and simplicial maps of the complexes of lower dimen-
sions (called skeletons), we construct a simplicial map of the whole complex
approximating the motion of the regions by an affine interpolation of the sim-
plicial maps of the skeletons (complexes of lower dimensions) of the regions.
In our cases, the skeletons are the piecewise linear curves (together with their
vertices) approximating the boundary of the region. The velocity vector field
describing the motion of the regions will be estimated from the simplicial maps
between the 2-dim simplicial complexes. The piecewise linear boundary curves
are 1-dim simplicial complexes and the triangulated regions are 2-dim simplicial
complexes.

In oceanographic image analysis and understanding, the estimation of veloc-
ity field is particularly difficult because of the non-rigidity of the motion of the
features. Also, the chaotic nature (turbulence) of fluid dynamics exacerbates
the problem.

The MCC (maximum cross correlation) method proposed by Emery et al.
computes surface advective velocities by using information from lagged matrices
between subareas of image sequences. However, this method is insensitive to
rotational components of feature motion.

Sethi and Jain showed that spatio-temporal coherence in extended frame
sequences can be used in computing object trajectories throughout an image

sequence.
2 Noise removal and edge extraction
To obtain a grey level image with noise removed, we performan adaptive thresh-

old and median filter operation on the raw image data. We apply further noise

removal, segmentation and edge extraction operations on the image. These op-
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erations can be done by applying mathematical techniques such as variational
method or wavelet method.

Once we have a noise removed, segmented and edge detected images, the
boundary curves of the regions are replaced by piecewise linear boundary (edge)
curves obtained by approximating the points on the boundary curves with
straight line segments. For step by step approximation procedure, we may
assume the boundary points are ordered from left to right and from top to
bottom.

It is sometimes convenient to use a metric other than the usual euclidean
metric on R’ given by da((z1,1),(22,%2)) = V(22— 21)? + (41 +y2)* We
can use a metric given by di((z1,41),(22,32)) = |22 — 21| + [y1 + paf or by
d2((z1, 1), (22,¥2)) = maz{|zs — 1], |1 + y2|} where (z;,3) € R%. These
three metrics are all equivalent in the sense that they define the same metric
structure and topological structure on the space R%. The geometries, however,
are different. With the euclidean metric ds, the set of equidistant points from
a point is a circle. With the other metrics d; and dj, the set of equidistant
points from a point is a square. For example, The set of all points of the unit
distance from the origin (0,0), {(z,v) : d1((0,0),(z,y)) = 1} is the (boundary
of the) square with vertices at (1,0),(0,1),(—1,0) and (0,—1). We may use any
of these metric, denoted by d, in this paper. It may be assumed that d is the
usual euclidean metric, if necessary.

3 Break points, extreme points and piecewise
linear approximation

Suppose we already have found the boundary. More specifically, assume we
have the (ordered) list of all the boundary points. We want to construct a
sublist of the boundary points to serve as the vertices of the piecewise linear
approximation of the boundary. We will start with the first three boundary
points, say p1,pa,p3. If pi, the i-th boundary point, is within the given threshold
distance from the line segment [p;_1, pi+1], then we replace the point p; by pi41
in the list. However, if the distance is greater than the threshold, p; is kept
and it becomes the initial point of the next approximation step. That is, we
check if the point p;4; is within the distance threshold from the line segment
[pi,pit2)- Iterate this procedure until there is no reduction of points in the
list. The points in this reduced list is used to construct a polygonal curve
(piecewise linear curve) approximating the boundary of the region. The points
in the sublist are the vertices of this polygonal curve (the end points of the line
segments in the polygonal curve), and they are called the break points on the
boundary.

It is obvious that the polygonal curve makes a turn (changes direction) at
each break point. The amount of turning at the break point will be measured by
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the cosine value of the angle of turning at the break point p;, which is computed

by the usual inner product in R? cosf; = H(;fi:_Pf:)‘l)lil(lp(;t:f;’)-‘)ll For example,
consider three points pi—1 = (—4,3), pi = (0,0), and piy1 = (4,0). The angle
of turning at p; is computed by cosf; = [CEE)ACH) % and 8;, the angle of

turning, is about 37 degrees. The angle of t\iming and the interior angle at
a point add up to 180 degrees, in other words, they angles are supplementary.
The cosine value will be close to 1 if the change of the direction is small and will
be much less than 1 or even negative if the change of direction is substantial.
If the cosine value at p; is less than a predetermined threshold, we will call the
point p; an extreme point. We may consider this definition of extreme point as
an analog of the points where the curvature of the curve attain local extrema.
We use the extreme points to estimate the velocity vector field at each stage
of the image sequence. In the following example we consider, for simplicity, a
pair of extreme points only in the image sequence. Suppose ay,az are extreme
points in the image and by, b, are the correponding extreme points in the next
image in the sequence. The velocity vector at ay is estimated by b — a; and
the one at ay is estimated by b — az. The velocity vectors at a; and at aj
are linearly extended to a vector field on the line segment joining a; and a» as
follows. Any point p on the line segement joining a) and a3 can be written as
p=ta; + (1 —t)ay forsome 0 < £ < L We estimate the velocity vector at
p by t(by — a1) + (1 — t)(b2 — a;) More specifically, let a; = (0,1), az = (0,0)
and a3 = (1,0) be extreme points and b = (1,3), b2 = (2,1) and b3 = (3, 1)
be corresponding extreme points in the subsequent image. Then the velocity
vector at p = (z,y) = za; + yaa is estimated by z(b1 — a1) + y(ba — a3) =
z(1,2)+y(2,1) = (z+2y, 2z-+y) This computation can be extended to the entire
region using the triangulation based upon the piecewise linear approximation of
the boundary curve. This procedure is called a simplicial approximation of the

velocity vector field.

4 Estimating Velocity vectors from the approx-
imation of region boundaries

Suppose a region in the image sequence is identified and its boundary curves

are approximated by piecewise linear curves. Suppose also extreme points on

each piecewise linear approximation of the boundary curves are found. We are
assuming the features in the oceanographic images are such that the extreme
points of one image move to the extreme points of the next image in the se-
quence. Under this assumption, we can track extreme points and the boundary

curve and eventually every point inside the region by interpolation based on the
simplicial approximation of the region.

Let C be a boundary curve in an image an
ary curve in the next image of the sequence. Let (g0, 91, --

d C’ be the corresponding bound-
., q&] be a piecewise
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linear approximation of C and [¢4,¢},-..,q}] be a piecewise linear approxima-
tion of C’. Suppose {e},...,en} is the set of all the extreme points of the curve

C and {e},...,el,} the set of all extreme points of the corresponding curve
C'. Note the sequence {ei,...,em} of extreme points (resp. {e},...,e;}) is
a subsequence of {go,q1,...,qx}, the sequence of all break points of C (resp.

{4b,9},--.,q;}, the sequence of all break points of C'.)

We are assuming the number of extreme points on two curves are the same.
This can be done by adjusting the preset value A (resp. A’) which determines
the extreme points on C (resp. C'). Since we assume the flow of the image is
such that the extreme point e; on C corresponds to e} on C’, we approximate
the velocity vector at e; representing the movement of the curve at ¢; by taking
the differences ¢} — e;. We can extend this approximation of the velocity vector
to generate a velocity vector field on the polygonal approximation [go,q1,. .., qx]
of C by affine extension as follows.

Let p = f(t) be a point on the polygonal curve [go,q1,...,qx) such that p
is between the extreme points e; = f(s;) and ;41 = f(si41). Let the corre-
sponding extreme points be e} = f'(s}) and e}, = f' (s,H) Then we assign

the vector f/(t') — f(t) to the point p where t' = s} + —'—*;(t - 5).

This is an obvious extension to the velocity vector ﬁeld on the polygonal
approximation of the curve C. We will denote the vector field on C by V.
If the curve C is closed so that it bounds a region then we can extend V to a
velocity field, also denoted by V, on the simplicial approximation of the region by
extending V on each simplex [p;, piy1,pi2] in the approximation as V{(f(p)) =
W () +sV(f(pig1)+rV(f(pit2)) where t,s,r are real numbers 0 < s,¢,r < 1
such that s+t +r =1 and p = {p; + spiy1 + rpiya-

5 Conclusion

A well established mathematical tool of simplicial approximation of regions on
a plane (or on a surface) and simplicial approximation of continuous mappings
between regions were applied to locate and approximate connected regions in
image sequence. Once the regions of interest were approximated by simplices
(called triangulation), vertices of the simplices in the approximation were iden-
tified and used to evaluate the velocity vector field of the features in the image
sequence. We need to identify the corresponding points in each image in the
image sequence to be able to estimate the velocity vector field. This is done
by locating extreme points on the boundary curves of the region in the image
sequence by assuming that extreme points on one image move to extreme points
on the following image in the sequence. From these estimates of the velocity
vectors, we interpolate the velocity field on the whole region by an affine ap-
proximation. This approach can also be applied for computing the velocity field
induced by rigid motion of objects in dynamic scenes.
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